首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287245篇
  免费   21849篇
  国内免费   10908篇
电工技术   15256篇
技术理论   31篇
综合类   17599篇
化学工业   48860篇
金属工艺   17050篇
机械仪表   18601篇
建筑科学   22903篇
矿业工程   9457篇
能源动力   7982篇
轻工业   16771篇
水利工程   4789篇
石油天然气   20154篇
武器工业   2284篇
无线电   31330篇
一般工业技术   34034篇
冶金工业   14918篇
原子能技术   2870篇
自动化技术   35113篇
  2024年   472篇
  2023年   4404篇
  2022年   6441篇
  2021年   10824篇
  2020年   8352篇
  2019年   7100篇
  2018年   8073篇
  2017年   9133篇
  2016年   7960篇
  2015年   11178篇
  2014年   13834篇
  2013年   16557篇
  2012年   17969篇
  2011年   19639篇
  2010年   16945篇
  2009年   16104篇
  2008年   15611篇
  2007年   15242篇
  2006年   16178篇
  2005年   14298篇
  2004年   9154篇
  2003年   7995篇
  2002年   7337篇
  2001年   6522篇
  2000年   7086篇
  1999年   8474篇
  1998年   6804篇
  1997年   5797篇
  1996年   5433篇
  1995年   4520篇
  1994年   3756篇
  1993年   2627篇
  1992年   2124篇
  1991年   1584篇
  1990年   1153篇
  1989年   921篇
  1988年   744篇
  1987年   490篇
  1986年   362篇
  1985年   235篇
  1984年   161篇
  1983年   105篇
  1982年   125篇
  1981年   84篇
  1980年   67篇
  1979年   24篇
  1978年   2篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
72.
As an anticancer drugs, arsenic trioxide (ATO) has been certified to efficiently treat refractory acute promyelocytic leukemia (APL). Unfortunately it suffers from limited therapeutic potency for solid tumors due to its in vivo restricted administration dose and rapid renal clearance. Herein, distinct 2D arsenic-phosphorus (AsP) nanosheets are engineered by adopting an alloy strategy followed by exfoliation, which can confine toxic arsenic into AsP crystals, thus significantly improving the biosafety and biocompatibility of arsenic-based chemotherapeutic drugs. Of particular note, the high light absorption and strong photothermal-conversion efficiency (37.6%) in the second near infrared biowindow (NIR-II) of AsP nanosheets not only endow them with desirable contrast-enhanced photoacoustic imaging properties, but also achieve efficient local tumor hyperthermia, which further synergistically triggers the in-situ transformation from low toxic/nontoxic AsP crystals into highly toxic arsenic species, exerting a strong arsenic-mediated antineoplastic effect. Both in vitro and in vivo data verify the synergy between photonic therapy in NIR-II and enhanced chemotherapy as enabled by AsP nanosheets, paving the way for efficient nanomedicine-enabled arsenic-based chemotherapeutic tumor treatment.  相似文献   
73.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
74.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
75.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
76.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   
77.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
78.
In this study, the anti-atherosclerotic properties of three marine phospholipids (MPLs) extracts from fishery by-products including codfish roe, squid gonad, and shrimp head are verified. Their effects on key factors involved in atherosclerosis are examined and compared to explore whether the differences in their constitutions lead to the differences in the function. All three MPLs dampen oxidation of low- density lipoproteins (LDL) in vitro. Treating RAW264.7 macrophages and HUVECs endothelial cells with each MPLs ranging 10–100 µg mL−1 does not decrease cell viability, yet ox-LDL caused cytotoxicity of both cells are alleviated by 50 or 100 µg mL−1 MPLs treatment. In addition, the three MPLs reduce ox-LDL induced macrophage foam-like transition, mainly through inhibition of lipid uptake. Of the three MPLs, the one from squid gonad exhibits the best effect. On the other hand, all three MPLs modulate inflammatory responses, equally, by inhibiting the adhesion of monocytes to endothelial cells, and decreasing secretion of pro-inflammatory cytokines IL-6 and MCP-1. Using a high-cholesterol diet induced zebrafish model, it is found that all three MPLs, especially the one from squid gonad, alleviates cholesterol accumulation in early plaques, and decreases total cholesterol as well as lipid peroxide in vivo. Practical Applications: As a way of making the best of the increasingly scarce marine resources, valuable lipid components can be recovered from by-products and wastes from the fishery industry. Here, we tested the anti-atherosclerotic effects and the mechanisms of three MPLs extracted from codfish roe, squid gonad, and shrimp head. Our study provides further evidence that marine phospholipids extracted from fishery by-products could protect against atherosclerosis, and helps to elucidate the structure-function relationship of MPLs.  相似文献   
79.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
80.
The transparent Er3+-Yb3+-doped fluoro-aluminosilicate glass-ceramic (GC) was prepared by melt-quenching. The crystal phase, morphology, and up-conversion (UC) luminescence of as-produced GC were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. The results show that BaYF5 nanocrystals were uniformly distributed in the glass matrix of the as-produced GC. When the as-produced GC was subjected to heat treatment, the crystallinity was increased, but the crystal identity remains unchanged. Such heat-treatment doubled the intensity of the UC luminescence, and this enhancement was ascribed to the increased incorporation of both Er3+ and Yb3+ ions into the lower phonon energy environment of BaYF5 nanocrystals. Furthermore, the heat-treated GC was stable against further crystallization, and consequently its UC luminescence was stable at the application temperature. The heat-treated GC was found to possess an outstanding temperature-sensing capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号